Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Gene Rep ; 21: 100891, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1023578

ABSTRACT

SARS-CoV-2, the causative agent of the COVID-19 pandemic, is an RNA virus that has inherent high rate of mutation. Due to the mutations, the virus evolves at a rapid pace that helps them to survive better inside the host. One of the hotspots of pharmacological interventions is to inhibit binding of virus with the host cells, which is mediated by Spike glycoprotein of SARS-CoV-2 and ACE2 receptors present on the human cells. This study was conducted with an aim to identify and characterise the mutation (s) present in the Spike glycoprotein of the SARS-CoV-2. Towards this, an in silico methodology was used, and the mutations on Spike glycoprotein were identified by comparing the Spike glycoprotein of first reported sequence from Wuhan wet seafood market virus with the available sequences of SARS-CoV-2 from Indian isolates. Our analysis revealed the presence of twenty-five mutations in Spike glycoprotein among Indian SARS-CoV-2 isolates. These mutations spread all over the protein and can be clustered at least into four distinct positions. Further, mutations at eleven positions exhibited alterations in the secondary structure of the polypeptide chain. We also investigated the influence of these mutations on overall protein dynamics and have shown that they affect the dynamic stability of the Spike glycoprotein.

2.
PeerJ ; 8: e9492, 2020.
Article in English | MEDLINE | ID: covidwho-658609

ABSTRACT

The rapid development of the SARS-CoV-2 mediated COVID-19 pandemic has been the cause of significant health concern, highlighting the immediate need for effective antivirals. SARS-CoV-2 is an RNA virus that has an inherently high mutation rate. These mutations drive viral evolution and genome variability, thereby facilitating viruses to have rapid antigenic shifting to evade host immunity and to develop drug resistance. Viral RNA-dependent RNA polymerases (RdRp) perform viral genome duplication and RNA synthesis. Therefore, we compared the available RdRp sequences of SARS-CoV-2 from Indian isolates and the 'Wuhan wet sea food market virus' sequence to identify, if any, variation between them. Our data revealed the occurrence of seven mutations in Indian isolates of SARS-CoV-2. The secondary structure prediction analysis of these seven mutations shows that three of them cause alteration in the structure of RdRp. Furthermore, we did protein modelling studies to show that these mutations can potentially alter the stability of the RdRp protein. Therefore, we propose that RdRp mutations in Indian SARS-CoV-2 isolates might have functional consequences that can interfere with RdRp targeting pharmacological agents.

SELECTION OF CITATIONS
SEARCH DETAIL